
ACPD
7, 11761–11796, 2007

Global H2O trends
from satellite

measurements

S. Mieruch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Atmos. Chem. Phys. Discuss., 7, 11761–11796, 2007
www.atmos-chem-phys-discuss.net/7/11761/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Atmospheric
Chemistry

and Physics
Discussions

Analysis of global water vapour trends
from satellite measurements in the visible
spectral range
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Abstract

Global water vapour total column amounts have been retrieved from spectral data pro-
vided by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2, which was
launched in April 1995, and the SCanning Imaging Absorption spectroMeter for At-
mospheric CHartographY (SCIAMACHY) onboard ENVISAT launched in March 2002.5

For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy
(AMC-DOAS) approach has been used. The combination of the data from both instru-
ments provides us with a long-term global data set spanning more than 11 years with
the potential of extension up to 2020 by GOME-2 data, on Metop.

Using linear and non-linear methods from time series analysis and standard statistics10

the trends of H2O contents and their errors have been calculated. In this study, factors
affecting the trend such as the length of the time series, the magnitude of the variability
of the noise, and the autocorrelation of the noise are investigated. Special emphasis
has been placed on the calculation of the statistical significance of the observed trends,
which reveal significant local changes of water vapour columns distributed over the15

whole globe.

1 Introduction

Water vapour is the most important natural greenhouse gas in the atmosphere and
plays an essential role in atmospheric chemistry, e.g. the rapid conversion of sulfur
trioxide to sulfuric acid, it is a source of the OH radical, and is also important for the20

ozone chemistry (Stenke and Grewe, 2005). In the context of climate change it plays
a crucial role because of strong feedback mechanisms (Held and Soden, 2000). Thus
the knowledge of the global distribution of H2O and its evolution in time is of utmost
importance for climatological models.

The strong infrared radiation absorbing character of H2O generates the natural25

greenhouse effect. Without H2O the global mean temperature would be 18◦C lower
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than today (Australian Bureau of Meteorology, 2005). The Earth’s surface tempera-
ture results from an equilibrium state of the incoming solar radiation and the outgo-
ing terrestrial radiation. Changes in the atmospheric composition, especially those of
greenhouse gases such as H2O, carbon dioxide and methane can alter the outgoing
terrestrial radiation which lead to a new equilibrium state between the incoming and5

outgoing radiation fluxes, thus resulting in a changing Earth surface temperature (Aus-
tralian Bureau of Meteorology, 2005). CO2 and CH4, which are also measured with
the SCIAMACHY instrument (Buchwitz et al., 2006), are particularly important in the
discussion of the anthropogenic greenhouse effect.

In the debates about climate change and the greenhouse effect H2O plays an ex-10

tremely important role. For instance, climate models predict a small relative global
increase of H2O contents due to the global warming caused by increasing CO2 and
other greenhouse gases (Dai et al., 2001). This increased H2O reduces the outgoing
long-wave radiation, which yields to an additional warming of the atmosphere according
to Houghton et al. (2001). Together with these indirect effects on the atmospheric H2O15

contents, direct influences of anthropogenic interventions such as irrigation (Boucher
et al., 2004) and deforestation (Gordon et al., 2005) alter the water vapour cycle and
thereby the concentrations on local as well as on global scale.

The H2O content of the atmosphere can be seen as a proxy for the climatic state
of a region, whether it is, for instance, humid or dry. Moreover, it is strongly linked20

to the surface temperature and to the lower altitude temperature of air, respectively.
This strong correlation is shown by Wagner et al. (2006). The H2O column amounts
are high over tropical rain forests, low over deserts or over the poles and medium
over the temperate zone. Figure 1 shows as an example the global annual mean H2O
column amounts for the year 2006 retrieved by the AMC-DOAS method (cf. Sect. 2)25

from SCIAMACHY data.
The H2O trends can be seen as tracers following the climatic state of a specific

region. Four different schematical scenarios of the evolution of H2O trends can be
envisaged, and are shown in Fig. 2.
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These scenarios comprise

1. Top left: No trend observation, which means no change for the climatic state of
the region.

2. Top right: A decreasing trend, i.e. the change from a humid state to a dry state.
An infinite decreasing trend is impossible, so the trend has to stagnate at a certain5

point. The H2O contents have significantly changed which could have dramatic
consequences for the flora (major vegetation types, savanna, tundra etc. as re-
ported by Melillo, 1999), fauna, agriculture and therefore inescapably for men.
Moreover this new state could be stable and a way back is perhaps not easy, or,
connected with a strong hysteresis (Scheffer and Carpenter, 2003).10

3. Bottom left: The same as in the top right panel vice versa. Here an increasing
trend pushes the system from a dry state to a humid state. As discussed above,
the consequences could be profound for an ecosystem, if its exposed to such
drastic changes.

4. Bottom right: The last scenario presents in principle an alternation of decreasing15

and increasing trends which manifests in a long-term oscillation. It is imaginable
that an ecosystem can live with such an oscillation if the amplitude is not too
strong and the period short enough, otherwise it will generate changes of the
ecosystem.

The above schematical scenarios of the evolution of H2O time series reveal the im-20

portance of trend detection. The H2O contents and their changes are strongly linked to
the climatic state and the vegetation type of a region. Plants, animals and humans are
adapted to their environmental conditions. Changes or trends of the atmospheric H2O
amounts, e.g. to dryer or more wet situations, can have critical consequences for life.
Moreover, H2O trend calculations are important to prove model results and increase our25

knowledge of the hydrological cycle on global and local scale. The understanding of
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H2O correlated atmospheric processes, (e.g. evaporation, precipitation and cloud dis-
tribution) is constrained by our study. Concerning natural hazards, especially extreme
rainfalls, H2O data arises a potential early warning for possible catastrophic events.
Kerr (2006) has detected such signals, which caused strong precipitation, floods and
landslides. These observed H2O patterns were firstly investigated by Zhu and Newell5

(1998) and called “rivers in the sky”. Changes in H2O contents, on a more local scale,
could reveal the formation of such “rivers in the sky” and should be a part of a future
flood forecasting system.

The importance and usefulness of H2O trends is enormous, but the detection of
such trends is difficult. The trends are influenced by several kinds of effects. First,10

the retrieved H2O columns, are influenced by e.g. the surface albedo and elevation
and secondly, the formulation of the trend model. On the one hand the data can be
influenced by instrumental change and on the other hand natural effects such as auto-
correlation in the data have to be considered. Another important natural phenomenon
influencing the H2O contents is the ENSO (El Niño Southern Oscillation). El Niño is15

a natural recurring (without a constant period) climate phenomenon mostly (but not
solely) impacting the tropics. With respect to atmospheric H2O the connection is per-
formed through increasing and decreasing (depending on geolocation) surface temper-
atures, which cause increase and decrease of evaporation. The influence of the large
El Niño event in 1997/1998 on the H2O amounts is shown in Wagner et al. (2005). After20

the strong 1997/1998 El Niño, two small El Niño events took place in 2002 and 2006.
Figure 3 shows the sea surface temperature (SST) anomalies (red) and the H2O total
column anomalies (blue) for the area from 4◦ N to 4◦ S and 150◦ W to 90◦ W, which are
both smoothed by a 5 months running mean filter. The El Ni no event in 1997/1998 ex-
ceeds the other events by a factor of about 3. This strong coupling of the near-surface25

temperature anomalies with the H2O total column anomalies is also shown in Wagner
et al. (2006).

Our H2O trend study comprises the years 1996 to 2006, i.e. 11 years of global satel-
lite data. This length of data cannot resolve long-term oscillation as described in the

11765

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11761/2007/acpd-7-11761-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11761/2007/acpd-7-11761-2007-discussion.html
http://www.egu.eu


ACPD
7, 11761–11796, 2007

Global H2O trends
from satellite

measurements

S. Mieruch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

bottom right panel of Fig. 2. However, it is enough to yield significant H2O changes on
several regions on Earth.

An overview on the H2O retrieval method and validation efforts is given in the follow-
ing Sect. 2.

In Sect. 3 requirements for the combination of the two data sets are discussed, which5

are implemented in Sect. 4, where we describe the trend estimation including the sta-
tistical modelling of the time series.

Section 5 shows the results from the global trend analysis for the combined data set,
and the influence of the 1997/98 El Niño event on the trends is investigated.

2 Data analysis10

The global H2O total column amounts used in the present study have been retrieved by
the Air Mass Corrected Differential Optical Absorption Spectroscopy approach (AMC-
DOAS) (Noël et al., 2004) from spectral data measured by the Global Ozone Monitoring
Experiment (GOME) flying on ERS-2 which was launched in April 1995 and the SCan-
ning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)15

onboard ENVISAT launched in March 2002. The basic principle of the method is to
calculate the difference between the measured Earthshine radiance and the solar irra-
diance at wavelengths where H2O absorbs radiation (here we use the wavelength band
from 688 nm to 700 nm) and relate this absorption-depth to the H2O column concentra-
tion. The AMC-DOAS method provides a completely independent data set, because it20

does not rely on any additional external information. The retrieval of H2O data from the
GOME instrument is described in Noël et al. (1999), where also validation results of the
data with SSM/I (Special Sensor Microwave Imager) data are shown. Likewise, SCIA-
MACHY H2O data have been validated with SSM/I and ECMWF (European Centre for
Medium-Range Weather Forecasts) data (Noël et al., 2005). An intercomparison and25

a preliminary connection of both, the GOME and the SCIAMACHY data sets, is shown
in Noël et al. (2006). The high quality of the two H2O data sets is demonstrated from
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validation and comparison results, and show that they can be merged well together,
thus, the trend analysis presented in this paper is build on a solid fundament. A good
overview of other H2O measuring instruments from space can be found in Brocard
(2006). Previous investigations of other H2O retrievals from GOME are described e.g.
in Maurellis et al. (2000) and Lang et al. (2003). A similar H2O trend study to ours is5

presented by Wagner et al. (2006) for the GOME data, based on a different retrieval
method described in Wagner et al. (2003). In this study we extend the data set with
the SCIAMACHY measurements and concentrate on the definition and calculation of
statistically significant trends.

3 The combination of GOME and SCIAMACHY data10

GOME on ERS-2 has been making measurements since June 1995 up to the present,
but since June 2003 no global coverage is provided as a result of a breakdown of the
on-board tape recorders. SCIAMACHY data are available since August 2002, but the
SCIAMACHY instrument did not achieve final flight conditions until January 2003. The
quality of the SCIAMACHY H2O data is furthermore slightly reduced in 2002, because15

of the non-availability of one of the diffuser plates for solar observation prior November
2002. Overall the most appropriate time for the change from GOME to SCIAMACHY
data results in 1 January 2003.

The period of near simultaneous global measurements of GOME and SCIAMACHY,
August 2002 to June 2003 has been studied explicitly. The global agreement results in20

an average deviation of −0.01 g/cm2 with a scatter of ±0.25 g/cm2 (Noël et al., 20071)
When producing a combined GOME/SCIAMACHY data record the following have to be
taken into consideration:

1Noël, S., Mieruch, S., Bovensmann, H., and Burrows, J. P.: A combined GOME and SCIA-
MACHY global H2O data set, in: ENVISAT Symposium 2007, SP 636 ENVISAT, ESA Publica-
tions Devision, Noordwijk, The Netherlands, submitted, 2007.

11767

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11761/2007/acpd-7-11761-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11761/2007/acpd-7-11761-2007-discussion.html
http://www.egu.eu


ACPD
7, 11761–11796, 2007

Global H2O trends
from satellite

measurements

S. Mieruch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1. Different equator crossing time.
GOME on ERS-2 and SCIAMACHY onboard ENVISAT, respectively, cross the
equator at 10:30 and 10:00 local time. That means SCIAMACHY and GOME
measure at different times slightly different states of atmospheric composition.
Therefore a possible mean level shift between both data sets has to be allowed5

for the combination of the data.

2. Differing spatial resolutions.
The spatial resolution of the GOME data is typically 40 km×320 km, whereas it
is 30 km×60 km for SCIAMACHY data. When combining both data sets, different
(higher) seasonal amplitudes have to be accounted for the SCIAMACHY data with10

respect to GOME,

The daily H2O columns are gridded on a 0.5◦×0.5◦ lattice and averaged to yield monthly
mean H2O columns.

The H2O columns are retrieved on a daily basis, but it has to be noted that ERS-2
and ENVISAT fly on a sun-fixed orbit, i.e. passing each point on Earth at constant local15

time. Thus measurements from GOME and SCIAMACHY are snap-shots of the actual
atmospheric conditions at specific locations at specific times.

A global coverage is achieved for GOME data within 3 days and for SCIAMACHY
nadir measurements within 6 days. Thus, in principle monthly mean data provide a
data set without gaps. However, few gaps are observed even in the monthly mean data,20

because high cloudiness and high mountain area (e.g. the Himalayas) measurements
are removed from the data by the AMC-DOAS algorithm. Moreover, since GOME and
SCIAMACHY are spectrometers using the sunlight, measurements are only possible
during daylight, and therefore no data is available at night, which results in a lack of
measurements at the poles during the polar night.25

The derivation of H2O columns from GOME-type instruments has also some unique
advantages. The retrieval is possible over land and ocean and no external calibra-
tion sources like radiosondes are required. Moreover, looking forward to the series of
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GOME-2 instruments on Metop, which result in a 25 years comprising data record.

4 Methods

4.1 Trend estimation

The detection of trends is difficult and depends on the length of the time series, the
magnitude of variability and autocorrelation of the data (Weatherhead et al., 1998).5

The trends can be influenced by level shifts inside the time series from instrument
changes or, new instrumental calibration etc.. Short time series as well as high vari-
ability, autocorrelation and level shifts in the data increase the uncertainty of trend
detection. Statistical methods are used to reveal trends and explore their uncertain-
ties. The methods used here are based on the approach of Weatherhead et al. (1998)10

and Tiao et al. (1990) and have been adapted to our requirements.

4.2 Statistical modelling

The time series of the data at one geolocation (i.e. a single grid point) can be described
by the following trend model:

Yt = µCt + St +ωXt + δUt + Nt , t = 0,...,T , (1)15

where Yt contains the monthly mean H2O measurements. µ is the mean water vapour
content of the time series at time t=0 and Ct is a constant, which is unity for all t. ω
represents the trend and Xt contains the time (in our case from January 1996 until De-
cember 2006 or from month 0 to 131, respectively), which is not necessarily equidis-
tant as there may be missing data. δ is the magnitude of a mean level shift at time20

t=T0 (0<T0<T ), where T0=84 represents the intersection of GOME and SCIAMACHY

data on January 1st 2003. Ut describes a step function:

Ut =
{

0, t < T0
1, t ≥ T0

, (2)
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and the seasonal component St is modelled by a Fourier series

St = η
4∑

j=1

[
β1,j · sin(2πjt/12) + β2,j · cos(2πjt/12)

]
. (3)

In contrast to Weatherhead et al. (1998) an additional term η=1+(γ−1)Ut is used and
describes an amplitude change of magnitude γ at time t≥T0.

The last term Nt in Eq. (1) contains the unexplained portion of the data, i.e. the5

noise. The noise Nt is assumed to be an autoregressive process of the order of 1
[AR(1)] (Schlittgen and Streitberg, 1997), i.e.

Nt = φNt−1 + εt , (4)

where εt are independent random variables with zero-mean and variance σ2
ε. This

assumption is used because environmental data is often autocorrelated, e.g. if the10

temperature is high at one day, a high temperature is probably on the next day. The
magnitude or the memory of the autocorrelation is presented by φ, which is restricted to
−1<φ<1, so the noise process Nt is stationary. The memory of the data at lag one can
be calculated using the autocorrelation function φ=CorrNtNt−1

, which is directly linked
to the well known correlation coefficient. More sophisticated approaches of analysing15

long-term correlations in environmental data are the Detrended Fluctuation Analysis
(DFA) (Rybski et al., 2006) and the modelling of time series with Markov-Chains (Fre-
und et al., 2006). However, we are interested in the autocorrelation at lag one, thus the
autocorrelation function is adequate for our purposes.

Generally the autocorrelation function is restricted to continuous, statistically station-20

ary stochastic functions, or in the discrete case equidistantly sampled data. Since there
are gaps in our time series the discrete correlation function for analysing unevenly sam-
pled data which was originally developed by Edelson and Krolik (1988) for astronomical
problems, was applied.

To calculate the autocorrelation of the noise, the noise itself has to be determined by25

applying the model (Eq. 1) to the data and subtract the fit from the data. For minimis-
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ing the model in a least square sense we used the well known Levenberg-Marquardt
algorithm for non-linear least square regression. The noise Nt is then given by the
remaining residuals:

Nt = Yt − (µ̂Ct + Ŝt + ω̂Xt + δ̂Ut) , (5)

where µ̂, ω̂, δ̂ are the least square estimators and Ŝt stands for the seasonal compo-5

nent resulting from the fitted parameters β̂i ,j and γ̂. The Nt are used to calculate first
the set of unbinned discrete correlations

θt =
Nt · Nt−1

σ2
N

, t = 1,...,T , (6)

where the Nt have zero-mean and variance σ2
N . Following the θt have to be assigned

to their lags, τt with10

τt = Xt − Xt−1 , t = 1,...,T . (7)

Now, the magnitude φ of autocorrelation at lag τ=1 can be determined by averaging
over the number M of θt with corresponding τt=1:

φ =
1
M

M∑
i=1

θi (τi = 1) . (8)

The great benefit of the discrete correlation function is that we can calculate a standard15

deviation

σφ =

√√√√ 1
M − 1

M∑
i=1

(θi (τi = 1) −φ)2 (9)

and a standard error of the mean

Sφ =
σφ
√
M

. (10)
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The aim of the above calculations concerning autocorrelations is to account for them
during the fitting procedure. For this purpose the seasonal component St is subtracted
from the data, because it has negligible effect on the estimation of the other parameters
(Weatherhead et al., 1998). The model then becomes

At = µCt +ωXt + δUt + Nt , t = 0,...,T . (11)5

After the non-linear terms have been removed from the model a linear matrix trans-
formation to consider the autocorrelations is possible. Making the connection to the
autoregressive process of Eq. (4), the model has absorbed the autocorrelations of Nt
into the transformed data A∗

t, the constant C∗
t , the time X ∗

t and the step function U ∗
t ,

whereas the Nt have lost their autocorrelations and have become white noise εt:10

A∗
t = µC∗

t +ωX ∗
t + δU ∗

t + εt , t = 0,...,T . (12)

Now a linear regression is applied, which can be solved analytically for the least square
estimators µ̂, ω̂, δ̂ and their errors σµ̂, σω̂, σδ̂ . Details of the transformation and re-
gression are given in the Appendix and in Weatherhead et al. (1998).

4.2.1 Trend fitting and estimation of the uncertainty15

After the implementation of the autocorrelations into the model and solving the linear
least square equations (where we denote the least square estimator of the trend with
ω̂) a good approximation of the error of the trend σω̂ is given by (Weatherhead et al.,
1998):

σω̂ ≈
√

12σN

`
3
2

·

√
1 +φ
1 −φ

· 1

[1 − 3ϑ(1 − ϑ)]
1
2

. (13)20

σω̂ depends on the standard deviation σN of the noise, the length of the time series ` ,
the autocorrelation φ of Nt and the fraction ϑ=T0/` of the data before the level shift
occurs.
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4.2.2 Significance of the trend

One main question concerning trends is whether the trend is significant or not. The
answer to this question can only be given in a statistical sense talking about probabil-
ities. Based on the null hypothesis that the observed trend is equal to zero H0 : ω̂=0
the alternative hypothesis is the observation of a nonzero trend H1 : ω̂ 6=0. Assuming a5

Gaussian distribution of the trends, the probability of measuring a trend with magnitude
greater than two times its error becomes PH0

{|ω̂|>2σω̂}=0.05 and the chance of making
an error in rejecting the null hypothesis is 5 %. Accordingly, the likelihood to be correct
in confiding the alternative hypothesis is 95 %. Therefore we will adopt the rule that a
trend ω̂ is statistically significant when a probability of 95 % is achieved with |ω̂| > 2σω̂.10

5 Results

5.1 Global trend patterns

The global trend patterns are determined from the long-term time series from January
1996 to December 2006 including GOME and SCIAMACHY globally gridded monthly
mean data on a 0.5◦×0.5◦ grid. Two ways of investigating the trends are informative;15

on the one hand displaying the absolute trends ω̂ in g/cm2 per year (Fig. 4 left) and on
the other hand displaying the relative trends ω̂/µ̂ in % per year (Fig. 4 right), where µ̂
represents the deseasonalised H2O contents at the beginning of the time series.

The absolute trends shown in Fig. 4 are stronger near the equator and smaller near
the poles. Bluish as well as yellowish and reddish patches are seen, thus there are20

negative as well as positive trends observed, however most trends are small and dis-
tributed around zero. The relative trends in Fig. 4 provide additional information about
the magnitude of the H2O content at a specific site.

Now the question arises if these observed trends are significant in a statistical way.
Here it has to be noted, that a non-significant trend does not mean that the results are25
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wrong, but that the magnitude of the observed trend has a higher uncertainty. We will
use the significance definition from Sect. 4.2.2 that a trend is significant if it is greater
than two times its error (Weatherhead et al., 1998). In addition we will extend the
significance criterion by the claim, that the time series has to contain at minimum 2/3
of the maximum data points and denote this additional criterion with `≥2/3L, where `5

is the number of data points of a specific time series and L is the number of maximum
data points. In our case we have 11 years of monthly data, yielding L=132 and `≥88.
Figure 5 shows the significant trends (left absolute, right relative), which are distributed
over the whole globe. The significant trends agree with either strong absolute or strong
relative trends. However, it is interesting that also small absolute (e.g. Antarctica) or10

small relative trends (e.g. Amazonia) can be significant.
Figure 5 reveals several local regions with significant trends, for instance increasing

H2O contents in Greenland, East Europe, Siberia and Oceania. Water vapour de-
crease is observed in the northwest USA, Central America, Amazonia, Central Africa
and the Arabian Peninsular.15

Since H2O trends are usually quite small, the consideration of both, the level shift
and the amplitude change during the fit routines, is highly important, especially the
level shift. Considering or not considering the level shift δ has crucial consequences for
the trends. This is revealed from a trend calculation only for the GOME data, were we
observed quite similar results to the combined data using the level shift. Disregarding20

the level shift yields rather different findings. Concluding, the integration of the level shift
term (which is investigated statistically in Sect. 5.3) in our model is absolute necessary
for our trend calculation.

Neglecting the change in the amplitude yields on the one hand a higher noise signal
in the deseasonalised data At. On the other hand a remaining seasonal component is25

left in the Nt, which results in changing autocorrelations. Both aspects are not critical
for the trends, but crucial for the estimation of the errors of the trends (Eq. 13) and
therefore the significance of the trends.
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5.2 Globally averaged monthly mean H2O trend

Our trend analysis is applied to a time series of deseasonalised globally averaged
monthly mean H2O columns shown in Fig. 6 including the strong 1997/1998 El Niño
data (left) and disregarding the 1997/1998 El Niño data (right). As can be seen from
Fig. 3 the two El Niño events in 2002 and 2006 are small compared to the El Niño5

in 1997/1998. Here, we can benefit from the consideration of the autocorrelation, be-
cause the possible change in H2O caused by an El Niño event changes the autocorre-
lation of the data. For instance increasing H2O contents over a limiting time increase
the autocorrelation which yields to a higher error σω̂ of the trend, because autocorrela-
tions are considered in Eqs. (12) and (13). Hence it is not necessary to remove small10

events such as 2002 and 2006.
It has to be noted that a weighted mean is used when accumulating spatial measure-

ments on a regular latitude/longitude grid, where the weights are given by the cosine of
the latitude of each grid point, to account for the different surface areas. The red line,
corresponding to the fit parameter ω̂, in the left panel of Fig. 6 shows an increase of15

0.0029 g/cm2±0.0028 g/cm2 per year, i.e. 0.14 % per year related to the fitted param-
eter µ̂=2.03 g/cm2. This trend is non-significant, because the high autocorrelation of
φ̂=0.6 increases the error of the trend σω̂ as can be seen from Eq. (13).

One reason for the high autocorrelation is the presence of high H2O column amounts
around the year 1998, which are most likely caused by the El Niño event. These higher20

columns are also reported by Wagner et al. (2005) for H2O retrieved from GOME data
by a different algorithm.

As stated above the 1997/1998 El Niño event is most likely influencing the trend in
the left panel of Fig. 6, and probably data obtained during the El Niño time have to be
removed as a kind of recurring phenomenon. Otherwise it is not clear if El Niño can be25

totally separated from the trend, because it cannot be excluded that for instance due to
an increasing H2O trend the magnitude of the El Niño is increased. Nevertheless, we
identify the strong 1997/1998 El Niño in the time series and remove the corresponding
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data to quantify the effect on the trends, especially on the significance of the trends.
The influence of the 1997/1998 El Niño is shown in Fig. 7, where the months are plotted
against the years and the globally averaged deseasonalised H2O column amounts are
coded with colours.

As can be seen from Fig. 7, high H2O contents are observed from September 19975

until March 1999. Accordingly, the global trend analysis is performed again with the
data set where we removed these potentially El Niño influenced data. The differences
on the global map between the complete data and the data where we removed El Niño
is quite small and also the significant trends are almost similar. This can be explained
by the fact, that as a result of the autocorrelation correction the influence of El Niño10

is reduced, i.e. data which is strongly influenced by El Niño is mostly non-significant,
because of high errors of the trend.

The right plot of Fig. 6 depicts the deseasonalised spatially averaged monthly mean
column amounts for the data with the El Niño event removed.

The trend (red line) yields 0.0039 g/cm2±0.0015 g/cm2 per year or 0.20 % per year15

thus the trend is significant with ω̂>2.6σω̂. The magnitude of the level shift is increased
with respect to the level shift in the left panel. The reason therefore is that the autocor-
relation of the time series is decreased to φ̂=0.2 and affects the fit parameters much
less without the El Niño data. Hence, there is a strong contribution of the 1997/1998 El
Niño event to the autocorrelations of the time series.20

To demonstrate the sensitivity of the calculated trends ω and their errors σω to the
used regression model and data set, several fitting procedures are performed for the
single time series of deseasonalised globally averaged monthly mean data. The trend
estimation (shown in Table 1) is applied, with and without the 1997/1998 El Niño data,
to GOME (January 1996 to December 2002) measurements only and to the complete25

data set based on GOME and SCIAMACHY measurements (January 1996 to Decem-
ber 2006). The first column of Table 1 indicates the fitting method used, i.e. all permu-
tations of considering and neglecting (denoted as cancelled parameter) the level shift
δ and the autocorrelation φ of the noise Nt.
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As can be seen from Table 1, fitting a single H2O time series (in this case the global
monthly mean data) is quite sensitive to the regression model used. Applying the full
model used in this paper (considering δ and φ) delivers the most reliable results, which
is explained below:

[ δ , φ ]: Both parameters, the level shift and the autocorrelation, are fitted to the5

complete data set. Including El Niño yields the trend from the left panel of Fig. 6,
which is relatively high, because the consideration of φ attenuates the high H2O
measurements in 1997/98. Otherwise a high error is observed, because fitting
δ and φ introduces additional uncertainties and therefore increases the error (cf.
Eq. 13). Neglecting El Niño increases the trend and decreases the error, because10

the resulting data contains less autocorrelations and less noise.

[ δ , φ ]: The trend calculation is performed without regarding autocorrelations
with the consequence that the high H2O amounts in 1997/98 lift up the trend curve
at that time and the magnitude of the trend is nearly zero. Furthermore the error
is decreased, because no autocorrelation is considered. However, the relative15

error is still about 100 %. If the El Niño data is masked the trend and its error have
hardly changed compared to the “full fit”, because φ is quite small without El Niño
data.

[ δ , φ ]: Fitting only the GOME time series from January 1996 to December 2002
and including autocorrelations yields an almost zero trend, because of the strong20

influence of El Niño in 1997/98. On the contrary, if the El Niño data is removed,
the trend and its error is quite similar to those calculated for the complete data
considering both parameters. If the regression without δ is performed for the
complete data set, the trend is increased, which is clear, because a positive level
shift (see Fig. 6), which exists but is not fitted, increases the trend. When the El25

Niño data is removed the level shift is even larger, which can be seen in Fig. 6. In
this case neglecting the level shift strongly increases the trend.
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[ δ , φ ]: Neglecting autocorrelations results for the GOME data with El Niño in a
nearly zero slightly negative trend, whereas without El Niño the trend is quite high
as in the case above. For the complete GOME and SCIAMACHY data the situ-
ation is similar to the above scenario. The negligence of δ extremely influences
the trend.5

Concluding the analysis of the consideration or negligence of the level shift and the
autocorrelations with respect to different data sets reveal that the full method applied to
the complete data set (as used in this paper) is the most reliable approach. The com-
plete time series therefore has to be used for the trend estimation. If the 1997/1998 El
Niño data is neglected, the trends are significant, with respect to our criterion |ω| > 2σω.10

A distinct agreement is observed for the trends calculated from the GOME data and
the complete data with removed El Niño, but considered level shift δ. In contrast, the
trends from the GOME data disagree with the trends from the complete set neglecting
the level shift. Therefore the consideration of the level shift is necessary, because an
increase of the trends from the GOME set to the complete set by a factor of about two is15

most unlikely. Also the trends including El Niño data from the complete data set (using
the level shift) and the GOME data agree within their errors, whereas the negligence
of the level shift strongly increases the trends, which is most probably wrong. The
consideration of the autocorrelations is necessary when the El Niño data is included.
Removing the El Niño data decreases the importance of the autocorrelation, however20

there is still autocorrelation in the data which has to be eliminated.

5.3 Influence of the level shift and the amplitude change

The above analysis showed that the derived trends are significantly affected by the
level shift. Therefore we present the results of a statistical investigation of the fitted
level shift δ and also the amplitude change γ and reveal their distributions. A statistical25

analysis of the least square estimator δ̂ of the mean level shift is shown in the left panel
of Fig. 8 were the density distribution (red bars) with binsize 0.02 g/cm2 of the δ̂ for the
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whole globe is plotted. The black line denoted with G describes a Gaussian which is
fitted to the distribution of the δ̂.

The level shifts between GOME and SCIAMACHY data reveal a slightly narrower
distributed offset than a Gaussian normal distribution between both instruments. A
description in terms of quantiles is quite suitable. The 10 % quantile, denoted as Q105

(magenta line) in Fig. 8 in the left panel, lies at −0.096 g/cm2, the 50 % quantile (the me-
dian blue line) has a magnitude of Q50=0.005 g/cm2 and the 90 % quantile (cyan line)
is observed at Q90=0.162 g/cm2. Strictly speaking, in most cases the H2O columns do
not change, which is reflected by the nearly zero median, but with a probability of 10 %
it changes less than –0.096 g/cm2 and more than 0.162 g/cm2 (also with a probability10

of 10 %), which corresponds to –4.7 % and 8.0 %, respectively, related to the global
mean H2O content at the beginning of the time series (fitted parameter µ) of about
2.03 g/cm2. This scatter of the level shift is attributed to the time delay between the
two instruments as well as to the high variability of atmospheric H2O. Most likely also
cloud statistics play a crucial role, because no H2O measurements at locations with15

thick cloud covers are possible.
The right panel of Fig. 8 depicts the global density distribution (binsize 0.02) of the

amplitude changes γ̂ together with a fitted Gaussian (black curve) denoted by G. As
expected, as a result of the higher resolution of the SCIAMACHY instrument, the am-
plitude factors γ̂ are higher than one with a median of Q50=1.029 (blue line), but with20

a scatter of Q10=0.852 (magenta line) and Q90=1.232 (cyan line). From this analysis,
it is clear that the natural variability of H2O dominates the changing amplitude. In addi-
tion the cloud statistics, i.e. the amount and distribution of clouds may be impacting on
the amplitude.

Concluding, both the mean level shift and the amplitude change at the intersec-25

tion of the GOME and SCIAMACHY data are small compared to the H2O column
amounts. However they need to be considered in the trend analysis, because the
observed trends are also small.
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6 Conclusions and discussion

The trend analysis (of global monthly mean H2O data from 1996 to 2006) focussed
on the estimation of the statistical significance of the observed trends. First the trends
were calculated from monthly mean H2O column amounts where we removed the sea-
sonal component. Special emphasis was placed on the consideration of autocorrela-5

tions in the data. The trend calculation, which is based on the well known least square
linear regression, provides an error for the trend. This error is influenced by the length
of the time series, the noise, the autocorrelation of the noise, and the level shift between
GOME and SCIAMACHY data.

Two criteria for a significant trend are proposed:10

(a) A trend has to be greater than 2 times its error, which arises from standard statis-
tics.

(b) The time series has to comprise minimum 2/3 of the maximum data, which is
required as a quality criterion.

For the period of January 1996 to December 2006 we found significant increase in the15

H2O amounts (cf. Fig. 5) in Greenland, East Europe, Siberia and Oceania, and we
have significant decrease in the northwest USA, Central America, Amazonia, Central
Africa, and the Arabian Peninsular. Following the schematic scenarios from Fig. 2,
the significant trends can be interpreted as tracers of the climatic state, hence these
regions are changing their states, e.g. from dry to humid (scenario 2) or from moist to20

dry (scenario 3). However long-term oscillations (scenario 4) cannot be excluded.
For the whole globe the increasing trend is non-significant when taking into account

the 1997/1998 El Niño event, which is seen in the globally averaged data as strong
positive H2O amounts from September 1997 to March 1999. Masking the El Niño
time span we find a significant H2O trend of 0.0039 g/cm2±0.0015 g/cm2 per year or25

0.20 % per year. Even stronger trends up to 5 % per year are observed on local scales.
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The H2O content is changing and the human impact on this is not clear. Though the
anthropogenic intervention in nature is beyond all question, on the one hand humans
irrigate fields (which has a direct effect on the atmospheric H2O contents reported by
Boucher et al., 2004) for agriculture, on the other hand they drain swamps. Woods
are deforested and grassland is concreted. Diamond (2005) refers to drastic anthro-5

pogenic interventions such as deforestation and high consumption of groundwater in
the northwest USA (especially in Montana), where we detect significant H2O decrease.
For instance Gordon et al. (2005) attribute a decrease in H2O flow of the Brazilian Ama-
zon region to 15 % deforested rainforest, which is in line with our observed decreasing
trends.10

At present the contribution of natural and anthropogenic induced changes remains
unclear.

A planned work is a correlation analysis between our H2O data set and cloud data,
surface temperature data and other meteorological measurements for instance surface
albedo values and precipitation. Especially important is the investigation of cloud data15

because it will contribute to a better understanding of the H2O data, because of their
strong coupling. As stated above human activities alter the land cover on Earth. There-
fore data sets which are directly linked to anthropogenic interventions such as irrigation
and deforestation can be very helpful to distinguish between humanly caused changes
and natural alterations. The influence of the El Niño event on the trends, which can be20

seen in our data, is an interesting point and needs further investigation.
From Fig. 2 one can imagine that at a certain length of the time series a linear

regression is not suitable, i.e. when there is more than one trend in the time series.
Dose and Menzel (2006) describe how a changing trend over time can be estimated for
long-term time series, which could be a useful method for the analysis of the extended25

data set comprising GOME, SCIAMACHY and GOME-2 (on Metop) measurements.
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Appendix A

Trend fitting and estimation of the uncertainty

The following steps show the calculating of the trend ω and the uncertainty of the trend
σω regarding autocorrelations. Equation (11) can be cast into compact matrix notation5

A = Xβ +N , (A1)

where A is the `×1 vector of observation, X is a `×3 matrix consisting of the con-
stant Ct, time Xt and step function Ut. β=(µ,ω, δ)′ represents the vector of unknown
regression coefficients and N is the noise vector afflicted with autocorrelations.

The Nt are directly calculated from the time series (cf. Eq. 5) and with the connection10

to the εt from Eq. (4) only the εt for t=1, ..., T can be calculated via

εt = Nt −φNt−1 (A2)

because no N−1 exists. Therefore the ε0 has to be estimated by ε0=
√

1 −φ2N0 which
is motivated by the assumption

σε

σN
≈

εt

Nt
. (A3)15

A matrix P′ is constructed which satisfies:

P′N = ε (A4)

which is in detail:
√

1 −φ2 0 0 . . .
−φ 1 0 . . .
0 −φ 1 . . .
...

...
...

...

 ·


N0
N1
N2
...

 =


ε0
ε1
ε2
...

 (A5)
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so that N=P′−1
ε.

The model Eq. (A1) becomes:

A = Xβ + P′−1ε . (A6)

Using matrix algebra, the model can be written as

P′A = P′Xβ + ε (A7)5

or using the transformed variables A
∗=P′

A and X∗=P′X we have

A
∗ = X∗β + ε . (A8)

Now we have absorbed the autocorrelations in the transformed variables A
∗ and X∗ of

model Eq. (A8) and we can apply a least square fit. The least square estimator can be
calculated by:10

β̂ = (X∗′X∗)−1X∗′A∗ . (A9)

Denoting the diagonal elements of (X∗′X∗)−1 with vj the variance of β̂ becomes:

Var(β̂j ) = σ2
εvj , j = 1,2,3 , (A10)

where σ2
ε stands for the variance of the εt. Therefore the variance of the trend estimator

ω̂ is15

σ2
ω̂
= Var(ω̂) = σ2

εv2 . (A11)

The variance σ2
ω̂ or the standard deviation σω̂, respectively, of the trend estimator con-

siders the length of the data (`), the contained noise (σε), the autocorrelation of the
noise (φ) and additionally the position of the level shift (ϑ), but not its magnitude. Thus
σω̂ can be written as20

σω̂ =

√
12σε

(1 −φ) · [`(`2 − 1)]
1
2

· 1

[1 − 3ϑ(1 − ϑ)]
1
2

, (A12)
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where ϑ=T0/` is the fraction of the data before the level shift occurs. With the assump-
tion `(`2−1)≈`3 Eq. (A12) can be written as:

σω̂ ≈
√

12σε

(1 −φ) · ` 3
2

· 1

[1 − 3ϑ(1 − ϑ)]
1
2

. (A13)

The variance σN of the autocorrelated noise Nt is directly related to the variance σε of
the white noise εt by σ2

N=σ
2
ε/(1−φ2), thus a good approximation is found with5

σω̂ ≈
√

12σN

`
3
2

·

√
1 +φ
1 −φ

· 1

[1 − 3ϑ(1 − ϑ)]
1
2

. (A14)

More details on the estimation of the trend uncertainty can be found in Tiao et al. (1990)
and Weatherhead et al. (1998).
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Table 1. Results from several fitting procedures show the sensitivity of the trends ω and their
errors σω (in g/cm2 per year) to the consideration of the level shift δ and the autocorrelations
φ.

including El Niño data neglecting El Niño data

GOME GOME & SCIA GOME GOME & SCIA

δ , φ – 0.0029 ± 0.0028 – 0.0039 ± 0.0015
δ , φ – 0.0002 ± 0.0002 – 0.0037 ± 0.0012
δ , φ 0.0006 ± 0.0040 0.0043 ± 0.0019 0.0034 ± 0.0015 0.0072 ± 0.0010
δ , φ −0.0010 ± 0.0019 0.0041 ± 0.0009 0.0033 ± 0.0012 0.0073 ± 0.0007
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Fig. 1. Annual mean H2O column amounts for the year 2006 derived from SCIAMACHY mea-
surements.
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Fig. 2. Schematical evolution of H2O time series: Top left: No trend. Top right: Decreasing
trend. Bottom left: Increasing trend. Bottom right: Oscillatory behaviour.
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Fig. 3. Monthly mean sea surface temperature (SST) anomalies (red) and GOME/SCIAMACHY
H2O total column anomalies (blue) averaged for the area 4◦N to 4◦S and 150◦W to 90◦W and
both smoothed by a 5 months running mean filter. SST Data taken from http://coaps.fsu.edu/
jma.shtml
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Fig. 3. Monthly mean sea surface temperature (SST) anomalies (red) and GOME/SCIAMACHY
H2O total column anomalies (blue) averaged for the area 4◦ N to 4◦ S and 150◦ W to 90◦ W and
both smoothed by a 5 months running mean filter. SST Data taken from http://coaps.fsu.edu/
jma.shtml.
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Fig. 4. Left: Absolute H2O trends. Right: Relative H2O trends. (1996 to 2006)
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Fig. 5. Left: Absolute significant H2O trends. Right: Relative significant H2O trends. (1996 to
2006)
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Fig. 6. Two time series of deseasonalised spatially averaged monthly means of the entire globe
with the trend (red line) regarding autocorrelations. Left: Including El Niño data. Right: With
removed El Niño measurements.
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Fig. 6. Two time series of deseasonalised spatially averaged monthly means of the entire globe
with the trend (red line) regarding autocorrelations. Left: Including El Niño data. Right: With
removed El Niño measurements.
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Fig. 7. Time series of months plotted against years, while the deseasonalised globally averaged
H2O column amounts are coded with colours.
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Fig. 8. Left: Density distribution of the mean level shift (δ̂) together with a fitted Gaussian (G),
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but here the density distribution of the amplitude changes (γ̂) between the data before and after
the level shift are shown.
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Fig. 8. Left: Density distribution of the mean level shift (δ̂) together with a fitted Gaussian (G),
the median (Q50), and the 10 % (Q10) as well as 90 % (Q90) quantiles. Right: Same as left,
but here the density distribution of the amplitude changes (γ̂) between the data before and after
the level shift are shown.
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